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Abstract

A new numerical method for solving the kinetic collection equation (KCE) is proposed, and its accuracy and conver-
gence are investigated. The method, herein referred to as the bin integral method with Gauss quadrature (BIMGQ), makes
use of two binwise moments, namely, the number and mass concentration in each bin. These two degrees of freedom define
an extended linear representation of the number density distribution for each bin following Enukashvily (1980). Unlike
previous moment-based methods in which the gain and loss integrals are evaluated for a target bin, the concept of
source–bin pair interactions is used to transfer bin moments from source bins to target bins. Collection kernels are treated
by bilinear interpolations. All binwise interaction integrals are then handled exactly by Gauss quadrature of various
orders. In essence the method combines favorable features in previous spectral moment-based and bin-based pair-interac-
tion (or flux) methods to greatly enhance the logic, consistency, and simplicity in the numerical method and its implemen-
tation. Quantitative measures are developed to rigorously examine the accuracy and convergence properties of BIMGQ for
both the Golovin kernel and hydrodynamic kernels. It is shown that BIMGQ has a superior accuracy for the Golovin ker-
nel and a monotonic convergence behavior for hydrodynamic kernels. Direct comparisons are also made with the method
of Berry and Reinhardt (1974), the linear flux method of Bott (1998), and the linear discrete method of Simmel et al. (2002).
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The kinetic collection equation (KCE) has long been used to mathematically model the time evolution of
size distribution of droplets due to their collision-coalescence events [1]. In the absence of other processes
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(e.g., condensational growth, breakup, etc.), KCE may be written in the form of a nonlinear integral-differen-
tial equation as
onðx; tÞ
ot

¼
Z x=2

x1

nðx� y; tÞKðx� y; yÞnðy; tÞ dy �
Z 1

x1

nðx; tÞKðx; yÞnðy; tÞ dy; ð1Þ
where nðx; tÞ denotes the number concentration distribution, namely, nðx; tÞ dx denotes the number of particles
per unit volume at time t with mass ranging from x to xþ dx; x1 is the mass of the smallest particle in the
system; and Kðx; yÞ is the collection kernel for interactions between particles of masses x and y. The first term
on the right-hand side of Eq. (1) is referred to as the gain integral representing the production of mass-x par-
ticles due to all possible binary collision-coalescence events of smaller particles, and the second term is the loss
integral resulting from collision-coalescence events involving mass-x particles as source particle. Typical appli-
cations of KCE include rain formation in warm clouds, production of titanium-dioxide pigments, fine spray
combustion, polymerization, and formation of industrial emissions [2,3]. KCE is also known as the population
balance equation, the Smoluchowski equation, or stochastic coalescence equation in various contexts in the
literature.

For the purpose of later discussions of the numerical results, we introduce the integral moments of nðx; tÞ of
order k as
MkðtÞ ¼
Z 1

x1

xknðx; tÞ dx; k ¼ 0; 1; 2; 3; . . . ð2Þ
In the case of cloud droplets, the first three moments, M0ðtÞ, M1ðtÞ, and M2ðtÞ, have specific physical signif-
icance as they represent the total number concentration, liquid water content, and radar reflectivity [4]. The
governing equations for the first three moments can be derived from Eq. (1), by noting the symmetry property
of the collection kernel [i.e., Kðy; xÞ ¼ Kðx; yÞ], yielding [4,5]
dM0ðtÞ
dt

¼ � 1

2

Z 1

x1

dx
Z 1

x1

dy nðx; tÞKðx; yÞnðy; tÞ; ð3Þ

dM1ðtÞ
dt

¼ 0; ð4Þ

dM2ðtÞ
dt

¼
Z 1

x1

dx
Z 1

x1

dy xynðx; tÞKðx; yÞnðy; tÞ: ð5Þ
It follows that the number density M0ðtÞ is monotonically decreasing, the mass density M1ðtÞ is a constant
(e.g., mass conservation), and the radar reflectivity M2ðtÞ and all higher order moments are monotonically
increasing. These properties of KCE are well known and are physically associated with the monotonic shifting
of the size distribution to larger sizes over time.

Other than the above general properties, the exact evolution of the size distribution depends on the nature
of the two-dimensional collision kernel Kðx; yÞ and the initial size distribution. Analytical solutions to KCE
have only been found for several very simple forms of Kðx; yÞ [6,5,7–11], a detailed review of which can be
found in [12]. For realistic forms of the collection kernel for cloud droplets, such as the Long kernel [13]
or the Hall kernel [14] often used for modeling gravitational coalescence in warm precipitating clouds, the time
evolution of droplet size spectrum can only be obtained through the numerical solution of KCE.

It is well known that numerical solutions of KCE are subject to numerical diffusion and dispersion errors or
a possible violation of overall mass conservation as expressed by Eq. (4) [15,16]. The numerical diffusion errors
stem from inadequate representations of the local slope and curvature in the size distribution, while the
numerical dispersion errors are caused by inaccurate relocations of mass classes after collision-coalescence
events. If the gain and loss integrals are evaluated separately in a numerical method (e.g., the method of Berry
and Reinhard [4]), the total mass of the system may not be conserved.

Over the years, three classes of numerical methods for solving KCE have emerged and they are summarized
as follows. The first class is denoted here as point-based methods. Examples include the high-order Lagrangian
interpolation method of Berry and Reinhardt [4], the collocation method of Gelbard and Seinfeld [17], and the
cubic spline interpolation method of Eyre et al. [18]. In these methods, the distribution function nðx; tÞ or some
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transformed form of nðx; tÞ is defined on a set of discrete points. Efforts are made to represent as accurately as
possible the continuous distribution function in terms of the values at the discrete points, in order to accu-
rately evaluate the gain and loss integrals. Since the gain and loss integrals are treated separately, the main
drawback of these methods is the lack of precise mass conservation, and this problem may be quite severe
for realistic collection kernels when a small number of discrete points are used [13,17,18]. Furthermore,
higher-order interpolation schemes such as the ones used in Berry and Reinhardt [4] could lead to numerical
instability in the tail region of the size spectrum (e.g. [19]).

The second class refers to spectral moment methods pioneered by Bleck [20] and Enukashvily [21], and fur-
ther developed by Tzivion et al. [16,22,23]. In these methods, the moments of the distribution function within a
discrete size bin or section xi 6 x < xiþ1
Fig. 1.
bin dis
is the t
on the
loss in
mkðt; iÞ �
Z xiþ1

xi

xknðx; tÞ dx; k ¼ 0; 1; 2; . . . ð6Þ
are to be found numerically, starting with the exact governing equation derivable from Eq. (1)
omkðt; iÞ
ot

¼
Z xiþ1

xi

xk dx
Z x=2

x1

nðx� y; tÞKðx� y; yÞnðy; tÞ dy �
Z xiþ1

xi

xknðx; tÞ dx
Z 1

x1

Kðx; yÞnðy; tÞ dy; ð7Þ
where xi and xiþ1 are the masses defining the left and right boundaries of bin i, respectively. We note that the
right-hand side of (7) now involves two-dimensional or area integrals over a pair of masses, x and y. The goal
in these methods is to represent the bin-based gain and loss integrals in Eq. (7) in terms of the spectral mo-
ments mkðt; iÞ themselves. Various approximate representations are made to the collision kernel function
and to the distribution function within each bin [16,20–23]. The key concept and the main mathematical dif-
ficulty in spectral moment methods are illustrated in Fig. 1. The loss integral, i.e. the second term on the right-
hand side of Eq. (7), can be evaluated in a straightforward manner since the boundaries of all subdomains
coincide with the bin boundaries, namely, the vertical rectangular integration region for the loss integral is
composed of subdomains formed by complete x and y bins. However, the gain term or the first term on
the right-hand side of Eq. (7) for the same target bin being considered is integrated over an tilted quadrilateral
An illustration of the domains of integration in spectral moment methods. Both mass axes are normalized by x1 and a logarithmic
tribution of mass ratio equal to

ffiffiffi
2
p

is assumed. The numbers on the right and top indicate the index number of a bin. Bin number 8
arget bin considered. The lines with a slope of �1 indicate the boundaries of bins with mass equal to ðxþ yÞ. The tilted quadrilateral
left indicates the domain of integration for the gain integral, and the vertical rectangular denotes the domain of integration for the
tegral.
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domain (the region marked by GAIN in Fig. 1) whose boundaries do not coincide with bin boundaries (i.e.,
the integration limits problem), leading to often very lengthy expressions of the gain integral as in Enukashvily
[21] and Tzivion et al. [16]. Furthermore, as a result of the integration limits problem, the gain integral requires
computation of higher-order spectral moments than those explicitly considered (the so-called closure prob-
lem), and as such more closure approximations are necessary for the gain integral when compared to the loss
integral. This fact implies that the mass conservation may not be guaranteed in actual implementation of spec-
tral moment methods, although the error in the total mass is typically less than 1%, e.g., Tzivion et al. [22].

The early method by Bleck [20] considers only one spectral moment (the mass) in each bin, and the later
ones by Enukashvily [21] and Tzivion et al. [16,22,23] employ two spectral moments (typically the number
and mass in each bin). These studies recognize the need to represent accurately the distribution of nðx; tÞ within
a spectral bin, particularly in the tail region of the size distribution. For that purpose, polynomials of various
orders or some combination of power law and polynomials have been attempted [16,20,23]. The detailed com-
parison study by Simmel et al. [24] seems to indicate that the spectral moment method is less accurate than
other methods at a given bin resolution, although the convergence studies by Tzivion et al. [16,23] show a
rapid convergence of their spectral moment method. Since Tzivion et al. [16,23] did not compare their con-
verged solution directly with those of other methods, it is not clear if their converged solution is indeed the
ground-truth solution.

While the above spectral moment methods derive themselves directly from the bin moment equations in
their integral form, several related methods [25–28] have also been developed to preserve moments based
on bin moment equations in their discrete form, in which the number or mass distribution in a bin is lumped
together at a discrete location without explicit consideration of the number concentration distribution within a
bin. These approaches can be formally linked to the integral form by using the mean value theorem of the
calculus, see [27] for an overview. The first such approach was provided by Kovetz and Olund [25] who
showed how to properly re-distribute a drop of a given volume created by collision-coalescence to two discrete
drop size classes in such a way that both number and mass are conserved. Kumar and Ramkrishna in a
sequence of papers [27–29] provided the most extensive and thorough development of two discrete moment
methods called a fixed pivot technique and a moving pivot method. In their approaches, any two discrete
moments can be chosen as the conserved properties and arbitrary mesh structure can be implemented.

The linear flux method of Bott [15] and the linear discrete method of Simmel et al. [24] fall into the third
class which we shall term as bin-based pair-interaction methods. The basic idea of these methods is to break the
contributions to the gain and loss integrals as a summation of a series of binary pair-interactions. The full
source (rather than full target) bins, say i and j bins, are considered when considering the consequences of such
binary pair-interactions, and the mass from the binary interaction is transferred into possibly two bins k and
k + 1, as shown in Fig. 2. By design, the mass conservation is ensured through
Dmði; i$ jÞ þ Dmðj; i$ jÞ þ Dmðk; i$ jÞ þ Dmðk þ 1; i$ jÞ ¼ 0; ð8Þ

where Dmðl; i$ jÞ denotes the change of mass in bin l resulting from collision-coalescence events with i and j

bins as source bins, namely, all binary collision-coalescence events of a droplet from bin i with a second drop-
let from bin j. Eq. (8) is the direct consequence of Eq. (4), when applied to the binary i$ j interaction. There-
fore, the gain and loss terms for the possibly four bins involved, i, j, k, and k + 1, are computed simultaneously.
In numerical implementations, only three of the four terms in Eq. (8) need to be directly computed, and Eq. (8)
may be used to evaluate the fourth term.

The domain of integration for the i$ j interaction is indicated by the rectangular region marked by thick
lines in Fig. 2. The right boundary of the k bin is represented by the line of xþ y ¼ xkþ1 and must necessarily
cut through the rectangular region. The gain terms to bin k and k + 1 must be determined in terms of the dis-
tributions of nðx; tÞ in the two source bins, bin i and bin j. However, in both the studies of Bott [15] and Simmel
et al. [24], this important and logical connection was not made when they designed their scheme for redistrib-
uting the mass into k and k + 1 bins.

The purpose of this paper is to combine the favorable features in the spectral moment methods and in the
bin-based pair-interaction methods. By doing so, we introduce rigor and logic to the bin-based pair-interac-
tion methods. At the same time, the bin-based pair-interaction methods contain a simple and more logical
treatment of the integration domains and greatly simplify the implementation details. The central question



Fig. 2. An illustration of the domain of integration in bin-based pair-interaction methods due to the pair interaction between bin #4 and
bin #8. The target bins are bin #8 and bin #9.
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we will address is how the terms in Eq. (8) can be more logically and accurately computed, in order to design
an accurate scheme with good convergence properties.

Our study is motivated by the need to obtain a numerically converged solution for KCE for an arbitrary
collection kernel. The similar motivation has led Tzivion et al. [16] to compare numerical solutions using dif-
ferent bin resolutions. In this paper, we will simultaneously consider the converged solutions from our new
method and three other methods including the method of Berry and Reinhardt (BRM) [4], the linear flux
method (LFM) of Bott [15], and the linear discrete method (LDM) of Simmel et al. [24]. We will also develop
quantitative measures of numerical errors in these approaches, based on a demonstrated ground-truth
solution.

Obtaining the ground-truth solution free of numerical errors is particularly important in order to quantify
the impact of the modified collection kernel due to air turbulence on the warm rain process [2,30]. This is
because the collection kernel Kðx; yÞ for x 6¼ y with a fine bin resolution can vary by 13 orders of magnitude
when the radii of droplets are varied from 10 to 60 lm, and because the air turbulence tends to modify the
collection kernel Kðx; yÞ selectively in the two-dimensional space ðx; yÞ [31–33]. Such a strongly nonlinear col-
lection kernel leads to an explosive growth, multiple peaks in nðx; tÞ, and exponential advancing fronts, all of
which challenge the accurate numerical integration of KCE. An accurate method for KCE is also necessary
when addressing the deviation of the spectral size distribution due to the true stochastic nature of the colli-
sion-coalescence process [34–36], when the numerical solution of KCE is compared to results based on
Monte-Carlo simulations [37,38].

The details of our bin integral method with Gauss quadrature (BIMGQ) will be described in Section 2.
Results and comparisons using the Golovin kernel will be presented in Section 3.1. In Section 3.2, numerical
results using the Long kernel and the Hall kernel will be discussed. Numerical accuracy and convergence are
discussed in Section 3.3. Conclusions and possible future developments will be outlined in Section 4.

2. The BIMGQ method

2.1. The concept and formulation

For computational efficiency, the mass (or radius) is discretized on a logarithmic scale, namely, the follow-
ing geometric grid is used to define the bin boundary locations
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xi � x1q
i�1 for i ¼ 1; 2; 3; . . . ;Nbin þ 1; ð9Þ
and the ith bin or section covers the mass range xi 6 x < xiþ1. Nbin is the total number of bins assigned to cover
an adequate size range. The mass ratio q is chosen to be
xiþ1

xi
� q � 21=s: ð10Þ
For convenience of handling self interactions, we shall assume that s is an integer, so that the self collision-
coalescence interactions of particles in bin i will lead only to transfer of mass from bin i to bin ðiþ sÞ.

We first recognize that the gain and loss integrals in the spectral moment equation, Eq. (7), can be treated as
summations of bin-based pair-interactions, as in Bott [15] and Simmel et al. [24]. All collision-coalescence
events can be accounted for by taking the following summation:
XM

i¼1

XM

j¼i

i$ j; ð11Þ
where M (M 6 Nbin) denotes the current maximum bin number, at time t, for which there is a non-zero bin
mass density (set by a small prescribed threshold). The value of M can increase with t as the size distribution
is broadened. Note that j P i in the above summation to avoid double-counting. Following Simmel et al. [24],
we shall assume that the zeroth moment and the first moment in each bin are the two prognostic variables to
be numerically solved:
~nðt; iÞ � m0ðt; iÞ ¼
Z xiþ1

xi

nðx; t; iÞ dx; ~mðt; iÞ � m1ðt; iÞ ¼
Z xiþ1

xi

xnðx; t; iÞ dx; ð12Þ
where nðx; t; iÞ represents an approximation to the local number density distribution in the ith bin. More spe-
cifically, for any time step, we assume that ~nðt; iÞ and ~mðt; iÞ are known for 1 6 i 6 M . The goal is to solve
~nðt þ dt; iÞ and ~mðt þ dt; iÞ for 1 6 i 6 M þ s, using the evolution equation, Eq. (7). For any positive function
nðx; t; iÞ, we have the following realizability condition:
xi 6
~mðt; iÞ
~nðt; iÞ 6 xiþ1; or 1 6

~mðt; iÞ
xi~nðt; iÞ 6 q: ð13Þ
The above goal is essentially the same as that in spectral moment methods involving two spectral moments
[16,21,22]. The difference is that, while in spectral moment methods the full gain and loss integrals are eval-
uated separately for a given target bin, here we compute the gain and loss integrals in pieces using the
pair-interaction concept. A pair-interaction may be a self interaction or more generally a cross-interaction
involving two distinct source bins. A self interaction i$ i causes changes to only two distinct bins, namely,
a reduction of spectral content in bin i and an augmentation of spectral content in bin iþ s. In the case of
a cross-interaction i$ j (j > i), the target can cover two consecutive bins, bin k and bin ðk þ 1Þ, with the tar-
get referring to bins for which this i$ j cross-interaction results in a gain of spectral contents. The boundary
xkþ1 between bin k and bin ðk þ 1Þ cuts through the range of mass of droplets formed by collision-coalescence
events due to the i$ j cross interaction, namely,
xi þ xj < xkþ1 < xiþ1 þ xjþ1: ð14Þ

For the geometric grid, the target cannot cover more than two bins since xiþ1 þ xjþ1 ¼ ðxi þ xjÞq. Therefore, an
i$ j cross-interaction could possibly affect the spectral contents of four distinct bins (i, j, k, and k + 1) if k > j.

If, however, xi þ xj < qxj or equivalently ðj� iÞ ln qþ lnðq� 1Þ > 0, then k = j, leading to spectral changes
of only three distinct bins: i, j, and j + 1. This situation occurs, for example, when q ¼

ffiffiffi
2
p

and ðj� iÞP 3, a
situation illustrated in Fig. 2. In our numerical implementation, however, we do not treat the case of k = j any
differently from the case of k > j.

Next we recognize that, with two degrees of freedom in each bin, a nonuniform local distribution nðx; t; iÞ in
each bin can be specified. Following Enukashvily [21], Eq. (12) can be inverted to provide the following
extended linear distribution in the ith bin,
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nðx; t; iÞ ¼
n1;i

x2;i�x
x2;i�x1;i

þ n2;i
x�x1;i

x2;i�x1;i
for x1;i 6 x 6 x2;i;

0 otherwise;

(
ð15Þ
where the four unknown parameters n1;i, n2;i, x1;i, and x2;i can be uniquely determined in terms of ~nðt; iÞ and
~mðt; iÞ. Here x1;i and x2;i can be viewed as the effective bin boundary locations as far as the gain and loss inte-
grals are concerned. The realizability condition, Eq. (13), implies only three possible scenarios. Fig. 3 illus-
trates these three scenarios according to the relative location of the mass-weighted particle size: (a)
xi ¼ x1;i < x2;i ¼ xiþ1, (b) xi ¼ x1;i < x2;i < xiþ1, and (c) xi < x1;i < x2;i ¼ xiþ1. In scenario (a), the distribution ex-
tends over the full bin and this occurs when ð2þ qÞ=3 6 ~mðt; iÞ=½xi~nðt; iÞ� 6 ð1þ 2qÞ=3, while scenarios (b) and
(c) correspond to the conditions 1 6 ~mðt; iÞ=½xi~nðt; iÞ� < ð2þ qÞ=3 and ð1þ 2qÞ=3 < ~mðt; iÞ=½xi~nðt; iÞ� 6 q,
respectively. In scenarios (b) and (c), only a portion of the bin is used to specify the distribution, with the rest
filled with zero value.

In terms of the linear distribution, ~nðt; iÞ and ~mðt; iÞ can be written as
~nðt; iÞ ¼ ðx2;i � x1;iÞ
n1;i þ n2;i

2
; ð16Þ

~mðt; iÞ ¼ ðx2;i � x1;iÞ n1;i
2x1;i þ x2;i

6
þ n2;i

x1;i þ 2x2;i

6

� �
: ð17Þ
The inversion formula under different scenarios can now be summarized. For scenario (a), we have
x1;i ¼ xi; x2;i ¼ xiþ1;

n1;i ¼ 2½~nðt; iÞðxi þ 2xiþ1Þ � 3~mðt; iÞ�=ðDxÞ2;
n2;i ¼ 2½�~nðt; iÞð2xi þ xiþ1Þ þ 3~mðt; iÞ�=ðDxÞ2;

ð18Þ
where Dx � xiþ1 � xi. The inversion formula under scenario (b) are
x1;i ¼ xi; x2;i ¼ xi þ 3½~mðt; iÞ=~nðt; iÞ � xi�;

n1;i ¼
2~nðt; iÞ

3½~mðt; iÞ=~nðt; iÞ � xi�
; n2;i ¼ 0:

ð19Þ
Finally, the expressions for scenario (c) are
x1;i ¼ xiþ1 � 3½xiþ1 � ~mðt; iÞ=~nðt; iÞ�; x2;i ¼ xiþ1;

n1;i ¼ 0; n2;i ¼
2~nðt; iÞ

3½xiþ1 � ~mðt; iÞ=~nðt; iÞ� :
ð20Þ
The above demonstrates the equivalence of the locally extended linear distribution, Eq. (15), and its specifi-
cation by the two moments ~nðt; iÞ and ~mðt; iÞ. Since the bin-level distribution is explicitly prescribed, all higher
order moments can be expressed using the distribution parameters. In general, the kth-order moment in the ith
bin can be computed as
mkðt; iÞ �
Z xiþ1

xi

xknðx; t; iÞ dx ¼ x2;i � x1;i

ðk þ 1Þðk þ 2Þ n1;i

Xk

m¼0

ðk þ 1� mÞxk�m
1;i xm

2;i þ n2;i

Xk

m¼0

ðk þ 1� mÞxk�m
2;i xm

1;i

" #
:

ð21Þ
xi xi+1 xi xi+1x2,i xi xi+1x1,i

n(x,t; i) n(x,t; i) n(x,t; i)

Fig. 3. The three possible scenarios of the extended linear function.
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The basic strategy in BIMGQ is to use the above extended linear distribution to calculate the right-hand side
of Eq. (7) so that the two bin moments, ~nðt; iÞ and ~mðt; iÞ, can be advanced in time. The right-hand side of Eq.
(7) cannot be explicitly expressed in terms of mk of the same order. In fact, the nonlinearity of the integrands
and the complex nature of the collection kernel imply a closure problem of such moment-based formulation
(e.g. [21]). To fully resolve the closure problem, we treat the collection kernel by the following bilinear
interpolation
Kðx; yÞ ¼ Kðxi; xjÞ
ðx� xiþ1Þðy � xjþ1Þ
ðxi � xiþ1Þðxj � xjþ1Þ

þ Kðxiþ1; xjÞ
ðx� xiÞðy � xjþ1Þ
ðxiþ1 � xiÞðxj � xjþ1Þ

þ Kðxi; xjþ1Þ
ðx� xiþ1Þðy � xjÞ
ðxi � xiþ1Þðxjþ1 � xjÞ

þ Kðxiþ1; xjþ1Þ
ðx� xiÞðy � xjÞ

ðxiþ1 � xiÞðxjþ1 � xjÞ
; ð22Þ
assuming that Kðxi; xjÞ is known for all combinations of bin boundary locations ðxi; xjÞ. This bilinear represen-
tation together with the extended linear representation for nðx; t; iÞ fully specifies the integrands on the right-
hand side of Eq. (7). The algorithm for carrying out the integrals in terms of a summation of all binary pair
interactions will be developed next.

2.2. Transfer due to pair interactions

While in Eq. (7), the gain and loss terms are referred to a specific target bin, we shall consider all relevant
bins together and re-group the transfer of number and mass by collision-coalescence in terms of all possible
combinations of binary source bins. For a cross interaction i$ j, the reductions in number and mass of the
source bins can be written as
D~nði; i$ jÞ ¼ D~nðj; i$ jÞ ¼ �dt
Z x2;i

x1;i

dx
Z x2;j

x1;j

dy nðx; t; iÞKðx; yÞnðy; t; jÞ; ð23Þ

D~mði; i$ jÞ ¼ �dt
Z x2;i

x1;i

dx
Z x2;j

x1;j

dy xnðx; t; iÞKðx; yÞnðy; t; jÞ; ð24Þ

D~mðj; i$ jÞ ¼ �dt
Z x2;i

x1;i

dx
Z x2;j

x1;j

dy ynðx; t; iÞKðx; yÞnðy; t; jÞ: ð25Þ
The newly generated droplets are transferred to bin k and bin k + 1, the augmentations of number and mass
concentration in bin k and bin k + 1 can be rigorously expressed as
D~nðk; i$ jÞ ¼ dt
Z Z
|fflffl{zfflffl}

Xk

dx dy nðx; t; iÞKðx; yÞnðy; t; j; Þ ð26Þ

D~nðk þ 1; i$ jÞ ¼ dt
Z Z
|fflffl{zfflffl}
Xkþ1

dx dy nðx; t; iÞKðx; yÞnðy; t; jÞ; ð27Þ

D~mðk; i$ jÞ ¼ dt
Z Z
|fflffl{zfflffl}

Xk

dx dyðxþ yÞnðx; t; iÞKðx; yÞnðy; t; jÞ; ð28Þ

D~mðk þ 1; i$ jÞ ¼ dt
Z Z
|fflffl{zfflffl}
Xkþ1

dx dyðxþ yÞnðx; t; iÞKðx; yÞnðy; t; jÞ; ð29Þ
where Xk and Xkþ1 are the subregions of integration with xþ y ¼ xkþ1 as the dividing line (Fig. 4). The above
expressions follow exactly from the kinetic moment equations, Eq. (7). Of importance is that the gain integrals
for the target bins are all written in terms of the masses x and y of the source bins. The net change in number
concentration due to the i$ j binary interaction is



Fig. 4. Sketch showing domains of integration for the gain integral to k and k + 1 bins, respectively. The ranges of integration over x and
y vary with the exact location of the line xþ y ¼ xkþ1 cutting through the shaded area, relative to the four dotted lines.
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D~nði; i$ jÞ þ D~nðj; i$ jÞ þ D~nðk; i$ jÞ þ D~nðk þ 1; i$ jÞ

¼ �dt
Z x2;i

x1;i

dx
Z x2;j

x1;j

dy nðx; t; iÞKðx; yÞnðy; t; jÞ: ð30Þ
The net change in the system mass is zero, namely, Eq. (8) is satisfied. The conservation properties imply that
it is sufficient to carry out only half of the integrations in Eq. (26)–(29), either the two over Xk or the two over
Xkþ1. When the line xþ y ¼ xkþ1 is located between the line +1 and line +2 in Fig. 4, it is more convenient to
integrate over Xkþ1 to obtain the gain terms for bin k + 1 directly. On the other hand, if the line xþ y ¼ xkþ1 is
located between the line 3 and line 4 in Fig. 4, only the gain terms over Xk are explicitly calculated. When the
line xþ y ¼ xkþ1 is located between the line +2 and line +3, there is no preference as to which subregion should
be performed directly.

For the i$ i self-collision, the number and mass will be transferred from bin i to bin iþ s, as follows:
D~nði; i$ iÞ ¼ �dt
Z x2;i

x1;i

dx
Z x2;i

x1;i

dy nðx; t; iÞKðx; yÞnðy; t; iÞ; ð31Þ

D~mði; i$ iÞ ¼ �dt
Z x2;i

x1;i

dx
Z x2;i

x1;i

dy xnðx; t; iÞKðx; yÞnðy; t; iÞ; ð32Þ

D~nðiþ s; i$ iÞ ¼ 1

2
dt
Z x2;i

x1;i

dx
Z x2;i

x1;i

dy nðx; t; iÞKðx; yÞnðy; t; iÞ; ð33Þ

D~mðiþ s; i$ iÞ ¼ �D~mði; i$ iÞ: ð34Þ
Therefore, there is no net change in the system mass, but the net change of the number due to the i$ i self
interaction is given as
D~nði; i$ iÞ þ D~nðiþ s; i$ iÞ ¼ � 1

2
dt
Z x2;i

x1;i

dx
Z x2;i

x1;i

dy nðx; t; iÞKðx; yÞnðy; t; iÞ: ð35Þ
The gain and loss integrals on the right-hand side of Eq. (7) can be evaluated by summing up all self and cross
binary interactions according to Eq. (11).
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2.3. Gauss quadrature

The remaining task is to perform the two-dimensional integrations for Eqs. (23)–(29) and Eqs. (31)–(34).
Given the linear representations of nðx; t; iÞ and Kðx; yÞ, the integrands are all polynomials of two independent
variables x and y. The orders of the polynomials are higher for the gain integrals due to the inclined boundary
at xþ y ¼ xkþ1. In principle, these integrals can be performed analytically but it is tedious due to the number of
terms involved. The Gauss quadrature formula is ideal for our purpose. In one dimension, the Gauss quad-
rature [39] is written as
Table
Exact

Order

1

2

3

4

Z b

a
f ðxÞ dx ¼ ðb� aÞ

2

Xm

a¼1

AðmÞa f
b� a

2
zðmÞa þ

aþ b
2

� �
: ð36Þ
where m is the total number of Gauss quadrature points used. Here zðmÞa (a ¼ 1; 2; . . . ;m) are Gauss quad-
rature abscissae defined in the domain ð�1; 1Þ, and AðmÞa are the weights. The values of zðmÞa and AðmÞa are
available from standard text [39], and are listed in Table 1 in a form that would allow double-precision
implementation. The Gauss quadrature formula is exact if f(x) is a polynomial function of order
ð2m� 1Þ or less.

The formula can be extended to two dimensions. For example, when the line xþ y ¼ xkþ1 is located between
line 1 and line 2 in Fig. 4, the gain integral given by Eq. (29) can be computed exactly as
D~mðk þ 1; i$ jÞ ¼ dt
Z x2;i

xkþ1�x2;j

nðx; t; iÞ dx
Z x2;j

xkþ1�x
nðy; t; jÞKðx; yÞðxþ yÞ dy

¼ dt
x2;i þ x2;j � xkþ1

2

X4

a¼1

Að4Þa nðxð4Þa Þ
xð4Þa þ x2;j � xkþ1

2

X2

b¼1

Að2Þb nðyð2Þab ÞKðxð4Þa ; yð2Þab Þðxð4Þa þ yð2Þab Þ;

ð37Þ
where
xð4Þa �
x2;i � xkþ1 þ x2;j

2
zð4Þa þ

x2;i þ xkþ1 � x2;j

2
; ð38Þ

yð2Þab �
x2;j � xkþ1 þ xð4Þa

2
zð2Þb þ

x2;j þ xkþ1 � xð4Þa

2
: ð39Þ
In the above example, the integrand for the inner integral is a polynomial of order 3 in y, while the integrand
for the outer integral is a polynomial of order 6 in x. The polynomial order for x takes into consideration that
yð2Þab depends linearly on x due to the inclined boundary xþ y ¼ xkþ1. These lead to the choice for the number of
Gauss quadrature points for the inner integral over y to 2 and for the outer integral over x to 4. Table 2 sum-
marizes the orders of polynomials and the corresponding numbers of abscissae needed for different terms
shown in Section 2.2, assuming that the integration over y is performed first.
1
expressions of Gauss quadrature abscissae and weights

(m) Abscissae (zðmÞa ) Weights (AðmÞa ) Polynomials order ð2m� 1Þ
0 2 1

�
ffiffi
1
3

q
1 3

0 8
9 5

�
ffiffi
3
5

q
5
9

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15�2

ffiffiffiffi
30
p

35

q
3
ffiffiffiffi
30
p
þ5

6
ffiffiffiffi
30
p 7

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15þ2

ffiffiffiffi
30
p

35

q
3
ffiffiffiffi
30
p
�5

6
ffiffiffiffi
30
p



Table 2
Polynomial order and the minimum number of Gauss quadrature points needed for the exact integration of the approximated gain and
loss integrals

Polynomial order m

x y x y

D~nði; i$ jÞ ¼ D~nðj; i$ jÞ 2 2 2 2
D~mði; i$ jÞ 3 2 2 2
D~mðj; i$ jÞ 2 3 2 2
D~nðk; i$ jÞ 5 2 3 2
D~nðk þ 1; i$ jÞ 5 2 3 2
D~mðk; i$ jÞ 6 3 4 2
D~mðk þ 1; i$ jÞ 6 3 4 2

D~nði; i$ iÞ 2 2 2 2
D~mði; i$ iÞ 3 2 2 2
D~nðiþ s; i$ iÞ 2 2 2 2
D~mðiþ s; i$ iÞ 3 3 2 2
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2.4. Summary of the numerical procedure

In summary, two bin moments (number and mass) are used in each bin to construct a locally extended lin-
ear distribution nðx; t; iÞ. This linear distribution in turn allows a consistent evaluation of the gain and loss
integrals in the kinetic moment equations. The algorithm consists of the following steps:

Step 1. Set up bin boundaries xi based on x1 and q (or s) and define the initial conditions for ~nðt ¼ 0; iÞ and
~mðt ¼ 0; iÞ with a given initial distribution nðx; t ¼ 0Þ.

Step 2. Construct a locally extended linear distribution nðx; t; iÞ in each bin by the two bin moments ~nðt; iÞ
and ~mðt; iÞ.

Step 3. Apply Gauss Quadrature formulae to evaluate the gain and loss integrals for each cross pair inter-
action and each self interaction.

Step 4. Sum up all interactions to form the net gain and loss to ~nðt; iÞ and ~mðt; iÞ for each bin.
Step 5. Advance the two bin moments to obtain ~nðt þ dt; iÞ and ~mðt þ dt; iÞ by the Euler method.
Step 6. Repeat Step 2 through Step 5 until a desired time is reached.

3. Results and discussions

In this section, numerical solutions from BIMGQ will be examined in detail and compared with those from
three other methods, namely, the method of Berry and Reinhardt (BRM) [4], the linear flux method of Bott
(LFM) [15], and the linear discrete method (LDM) of Simmel et al. [24]. The LFM code contains an improve-
ment over what was reported in [15], namely, with a local exponential fit in the form of g ¼ c1 expðc2 ln rÞ
being used for computing the mass splitting over the target bins. The exponential fit was found to yield opti-
mal results in Bott’s approach [24]. We will also compare all solutions to either analytical or converged solu-
tion and develop quantitative error measures to study the rate of convergence of each method.

Numerical solutions are often presented in terms of the mass distribution function gðln r; tÞ � 3x2nðx; tÞ over
a logarithmic radius scale, such that the total mass is equal to the area under the gðln r; tÞ curve, namely,
M1ðtÞ ¼
Z

gðln r; tÞ dðln rÞ; ð40Þ
where r is the radius of droplets and is related to the mass by r � ½3x=ð4pqwÞ�
1=3. The water density qw is set to

103 kg/m3.
The solution of KCE depends on the initial distribution and the nature of collection kernel. The following

initial size distribution
nðx; t ¼ 0Þ ¼ N 0

�x0

exp � x
�x0

� �
; or gðln r; t ¼ 0Þ ¼ 3L0

x
�x0

� �2

exp � x
�x0

� �
ð41Þ
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is used, similar to previous studies [4,15,24]. The above distribution is theoretically defined over 0 < x <1,
with the initial total number concentration N0 and the initial mean mass �x0 � L0=N 0. Here L0 is the liquid
water content (total liquid mass per unit volume). Following Simmel et al. [24], we set the initial mean radius
�r0 � ð3�x0=4pqwÞ

1=3 to 9.3 lm and L0 to 1 g/m3. These correspond to N 0 � 300 cm�3 and �x0 � 3:37� 10�9 g.
Another parameter for the initial condition is the minimum droplet radius r1 � ½3x1=ð4pqwÞ�

1=3 considered.
We chose r1 ¼ 1:5625 lm to ensure that the mass below x1 in the above distribution is negligible. The trun-
cated mass is

R x1

0
xnðx; t ¼ 0Þ dx or 1:12� 10�5L0, leaving the actual mass represented on the numerical grid

to be 0.999989 g/m3. The time step size dt was set to 1 s.

3.1. Golovin kernel

We first consider the Golovin collection kernel with Kðx; yÞ ¼ bðxþ yÞ and b ¼ 1:5 m3=ðkg sÞ. The Golovin
kernel is often used to test different numerical methods for KCE since the analytical solution exists for this
case [9] and it may be used as an approximation to the actual hydrodynamic kernel for large cloud droplets.

In order to clearly demonstrate the accuracy of BIMGQ, we shall first examine the salient properties of a
collision-coalescence system governed by the Golovin kernel. In this case, Eqs. (3) and (4) can be shown to
become
dM0ðtÞ
dt

¼ �bM0ðtÞM1ðtÞ ¼ �bL0M0ðtÞ; ð42Þ

dM1ðtÞ
dt

¼ 0: ð43Þ
Therefore, the system number density and mass density have the following analytical solutions:
M0ðtÞ ¼ N 0 expð�bL0tÞ; M1ðtÞ ¼ L0: ð44Þ

It can be shown that, with our BIMGQ algorithm and the Euler scheme for time integration, these two global
moments are updated, at each time step, as follows:
M0ðt þ dtÞ �M0ðtÞ ¼ �bM0ðtÞL0 dt; ð45Þ
M1ðt þ dtÞ �M1ðtÞ ¼ 0: ð46Þ
Eq. (45) follows from the fact that the right-hand side of Eq. (3) can be written precisely as
�0:5b½

P
~mðt; iÞ

P
~nðt; iÞ þ

P
~nðt; iÞ

P
~mðt; iÞ� ¼ �bM0ðtÞL0. These correspond exactly to the differential equa-

tions, Eqs. (46) and (47), if the same Euler scheme is used for time integration. Therefore, neglecting any
numerical roundoff errors, the total number density from the BIMGQ algorithm evolves as
M0ðk dtÞ ¼ ð1� bL0 dtÞkM0ðt ¼ 0Þ; ð47Þ

where k is the number of time steps. The mass conservation M1ðk dtÞ ¼ L0 is ensured by design, as in other bin-
based pair-interaction (or flux) methods [15,24]. We initialize ~nðt ¼ 0; iÞ and ~mðt ¼ 0; iÞ using the definitions
given by Eq. (12) with nðx; t ¼ 0Þ from Eq. (41).

The important observation here is that, for the Golovin kernel, our method treats both the zeroth-order
and first-order moments exactly except the time integration error, regardless of the bin resolution (the param-
eter s) used. This is a consequence of the fact that Golovin kernel is itself a polynomial and is treated exactly in
BIMGQ.

Fig. 5 compares the predicted total number, on a linear-log plot, with the analytical solution and the
numerical solution of Simmel et al. [24]. With dt = 1 s, bL0dt ¼ 0:0015, the numerical solution given by
Eq. (47) differs from the exact solution given by Eq. (44) by a factor 0:999250:0015t which is very close to
one for all the times considered in Fig. 5, namely, dt is small enough and the time integration error for
M0ðk dtÞ is negligible. This is why the predicted total number by BIMGQ overlaps precisely with the analytical
solution for the two bin resolutions (s = 1 and s = 2). The above analysis and the numerical results show that,
for the case of Golovin kernel, not only does our method conserve mass exactly, it also predicts the total num-
ber exactly due to the consistency of the formulation with the moment equation. This excellent feature is not
retained in the methods of Bott [15] and Simmel et al. [24], due to the fact that their methods for redistributing



Fig. 5. The total number as a function of time for a collision-coalescence system driven by the Golovin kernel. Note that BIMGQ overlaps
precisely with the analytical solution for both bin resolutions. The results from Bott’s flux method [15] are almost identical to those of
Simmel et al. [24].
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number and mass into bin k and bin k + 1 are not derived directly from the gain integrals according to the
moment equations.

The mass density distributions at t = 20 min and t = 40 min are shown in Figs. 6 and 7, respectively, on a
linear-linear plot for different numerical approaches. The bin resolution is set to s = 2. Figs. 6 and 7 indicate
that BIMGQ provides the best prediction near the peak region, compared to other approaches. Overall,
BIMGQ and BRM are more accurate than LFM and LDM, especially near the peak of the distribution.
The LDM appears to give the worst prediction near the peak.

Fig. 8 compares four numerical methods at t = 20 min and t = 40 min on a log–log plot. This figure allows
a closer inspection of the right tail of the drop size spectra. B-R’s method gives almost exact prediction of the
distribution in the tail region. BIMGQ very slightly underestimates the mass density in the tail region. Sim-
mel’s linear discrete method and Bott’s linear flux method both overestimate the mass density due to numer-
ical diffusion. Bott’s LFM appears to yield the worst prediction in the tail region.

3.2. Hydrodynamic kernels

Next we consider two hydrodynamic kernels, the Long kernel [13] and the Hall kernel [14] often used along
with KCE to study the growth of cloud droplets due to gravitational collision-coalescence. The Long kernel is
based on the gravitational coalescence with empirical curve fittings to the collision efficiency. The Hall kernel
uses tabulated data of collision efficiency in [14]. A detailed description of these kernels along with the model
for terminal velocity can be found in [12]. These hydrodynamic kernels are highly nonlinear and can lead to
explosive growth of the size spectrum [4]. In the following, the same initial condition and parameter settings as
stated previously are assumed.

In this paper, we focus on numerical issues related to the size discretization of the kinetic collection equa-
tion. The time step dt is fixed to a small value of 1 s, so that the time discretization error is negligible even for
hydrodynamic kernels. To confirm this, we fix the size resolution parameter to s = 16 in BIMGQ so the size
discretization error is negligible (see below for confirmation of this). We vary the time step size, and compare
the resulting moments at t = 60 min. We found that the first four moments are almost identical (with relative
error less than 1%) when dt 6 2 s.

Because analytical solutions are not available for these hydrodynamic kernels, we shall first establish a
benchmark numerical solution so that the accuracy of different numerical approaches can be assessed. We first



Fig. 6. Mass density for Golovin kernel as a function of droplet size at t = 20 min. Numerical solutions from different approaches are
compared with the analytical solution: (a) the full size range; (b) region near the peak.
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ran BIMGQ along with BRM, LDM, and LFM for a pure collision-coalescence system governed by the Long
kernel, starting with a coarse bin grid at s = 1. As the grid is gradually refined with s = 2, 4, 8, and +16, we
found that the solutions based on BIMGQ, BRM, and LDM all converge to the same solution at all times
up to t = 3600 s. Fig. 9 displays the solution at 7 different times obtained with s = 16, noting that each of
the 7 curves actually contains three independent curves based on BIMGQ, BRM, and LDM. Because the
results from the three methods overlap precisely, they cannot be distinguished in Fig. 9, with a minor exception
at t = 30 min when a slight difference is seen at the far end of the steep advancing front with g < 10�7 g=m3. This
minor difference appears to be related to the transition from the autoconversion growth mode to the accretion
mode [4], but disappears almost completely a few minutes later. To the authors’ knowledge, no such benchmark
solution at this fine resolution has been documented simultaneously with three independent methods. Specif-
ically, we were able to modify the BRM code to allow for the use of arbitrary s. Most previously published
results of the BRM code used only one bin resolution at s = 2. The distributions shown in Fig. 9 can be viewed



Fig. 7. Mass density for Golovin kernel as a function of droplet size at t = 40 min. Numerical solutions from different approaches are
compared with the analytical solution: (a) the full size range; (b) region near the peak.
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as the ground-truth solution of the KCE for pure collision-coalescence governed by the highly nonlinear Long
kernel. The LFM overpredicts the distribution at the steep front and fails to converge even for s = 32.

The time evolution of the size distribution clearly shows two distinct stages. For t < 20 min, the growth is
governed by collisions of small cloud droplets near the initial peak to slowly feed the mass to the nearby front
at the right, gradually building up the mass around 50 lm in radius. The evolution in this early stage is called
autoconversion by Berry and Reinhardt [4], this process proceeds very slowly since the collection kernel is
small in magnitude. Once a small percentage of droplets larger than 50 lm has developed, the larger cross-col-
lision collection kernel between these larger droplets and the small cloud droplets at the initial peak converts
much more effectively the mass from the initial peak to droplets near the advancing front, leading to the gen-
eration of a second peak that moves continuously and rapidly to the right, due to the ever increasing collection
kernel for cross-size collisions. This process initiates the accretion mode of growth in which the mass from the
initial peak converts directly to the second peak. On the log–log plot, a somewhat discontinuous minimum at



Fig. 8. Logarithmic plots of mass density for Golovin kernel as a function of droplet size: (a) t = 20 min and (b) t = 40 min. Numerical
solutions at the bin resolution s = 2 from different approaches are compared with the analytical solution.
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r ¼ 51 lm can be observed for the Long kernel. This is perhaps due the somewhat non-smooth transition of
collision efficiency from less than one for r < 50 lm to one for r > 50 lm.

Another check of the convergence is to compute the moments MpðtÞ from these fine-resolution numerical
solutions, which are shown in Table 3 for k = 0 (number) and 1 (mass), and in Table 4 for k = 2 (radar reflec-
tivity) and 3. The moments are calculated based on the mass density distribution using Eq. (48). By design, the
first moment (mass density) is exactly conserved in BIMGQ, LDM, and LFM, while an extremely small
increase in mass (with no physical significance) is observed in BRM. BIMGQ provides a number density iden-
tical to BRM at all times. The maximum errors in number density for LDM and LFM, when compared with
BRM, occur at later times and are 0.9% and 1.8%, respectively. Of significance is the fact that the total number
density changes slowly before the first 30 minutes but then drops very quickly in the last 30 minutes. Physi-
cally, this is due to the strong nonlinearity of the collection kernel which makes it possible for the system to



Fig. 9. The converged solutions of the mass density distribution for the Long kernel: (a) log-linear plot; (b) log–log plot. The number
marks the time in minutes. Each line represents actually three overlapping lines from the three methods (BIMGQ, BRM, LDM) unless
explicitly noted for the steep front at t = 30 min. shown in (b). A fine bin resolution with s = 16 is used for all methods.
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switch from the autoconversion growth mode of small cloud droplets to the accretion of small cloud droplets
by newly formed rain drops.

Given the high accuracy of BRM and the above demonstrated convergence, we may take the solution of
BRM at s = 16 as the exact solution. The second and third order moments, M2ðtÞ and M3ðtÞ, obtained from
the other three methods at s = 16 can now be compared to these from BRM. BIMGQ gives essentially iden-
tical values for M2ðtÞ and M3ðtÞ as BRM, with relative difference less than 0.2%. LDM has a maximum relative
error of 3.3% for M2ðtÞ and 5.7% for M3ðtÞ; it is interesting to note that the relative errors reach the maximum
at about t = 30 min and then decrease afterwards. Because of the overprediction at the steep front, LFM has a
maximum relative error of 9.8% for M2ðtÞ and 29.8% for M3ðtÞ. A small overprediction can have a noticeable
effect on high order moments. The difficulty for Bott’s LFM to converge and the large errors for high-order
moments imply some inherent inconsistency of the approach. The first four moments listed in Tables 3 and 4
from BRM and BIMGQ can be viewed as exact benchmark values against which the accuracy of any numer-
ical method for solving KCE can be evaluated. The above also indicates that a visual overlap of the curves
does not guarantee the convergence of high-order moments. On the other hand, a very small difference in
the far tail does not necessarily imply a poor prediction of a particular moment.

A similar task was undertaken to establish the benchmark solution for the Hall kernel. Again at s = 16,
BIMGQ, BRM, and LDM converge essentially to a same solution at all times, as shown in Fig. 10. The overall



Table 3
Predicted total system mass and number densities for a system driven by the Long kernel

t (min) M0ðtÞ (1/cm3) M1ðtÞ (g/m3)

BIMGQ BRM LDM LFM BIMGQ BRM LDM LFM

0 295.4 295.4 295.4 295.4 0.999989 0.999989 0.999989 0.999989
10 287.4 287.4 287.4 287.4 0.999989 0.999990 0.999989 0.999989
20 278.4 278.4 278.4 278.3 0.999989 0.999991 0.999989 0.999989
30 264.4 264.4 264.4 264.3 0.999989 0.999999 0.999989 0.999989
40 151.7 151.7 150.8 150.4 0.999989 1.00003 0.999989 0.999989
50 13.41 13.41 13.29 13.41 0.999989 1.00003 0.999989 0.999989
60 1.212 1.212 1.203 1.234 0.999989 1.00004 0.999989 0.999989

A fine resolution at s = 16 was used for all methods.

Table 4
Predicted second and third moments for a system driven by the Long kernel

t (min) M2ðtÞ (mg2/cm3) M3ðtÞ (mg3/cm3)

BIMGQ BRM LDM LFM BIMGQ BRM LDM LFM

0 6.739E�9 6.740E�9 6.739E�9 6.739E�9 6.813e�14 6.818e�14 6.813e�14 6.813e�14
10 7.402E�9 7.402E�9 7.402E�9 7.402E�9 9.305e�14 9.309e�14 9.305e�14 9.305e�14
20 8.720E�9 8.720E�9 8.724E�9 8.726E�9 5.710e�13 5.717e�13 5.904e�13 6.324e�13
30 3.132E�7 3.132E�7 3.234E�7 3.440E�7 3.967e�8 3.967e�8 4.193e�8 5.148e�8
40 3.498e�4 3.499e�4 3.589e�4 3.844e�4 1.048e�3 1.049e�3 1.093e�3 1.288e�3
50 1.068e�2 1.068e�2 1.078e�2 1.119e�2 2.542e�1 2.545e�1 2.588e�1 2.806e�1
60 3.199e�2 3.200e�2 3.212e�2 3.275e�2 1.731 1.733 1.744 1.815

A fine resolution at s = 16 was used for all methods.
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growth rate for the Hall kernel is slower than that for the Long kernel. Another noticeable difference between
results of the Hall kernel and Long kernel lies in the small size range. The mass density for droplets below
10 lm decreases more quickly and uniformly in the case of Long kernel (Fig. 9b), but this is not observed
for the Hall kernel (Fig. 10b). LFM also fails to converge for the case of Hall kernel.

The moments from various methods at s = 16 are provided in Tables 5 and 6. Once again, BIMGQ and
BRM produce almost identical first four moments at all times, with a relative difference less than 0.2%. Having
two different classes of numerical methods providing the identical solution confirms the convergence. The
maximum relative errors for LDM are 0.16%, 1.6%, 3% for M0ðtÞ, M2ðtÞ, and M3ðtÞ, respectively. LFM has
maximum relative errors of 0.31%, 5.0%, 14.6% for M0ðtÞ, M2ðtÞ, and M3ðtÞ, respectively. The benchmark val-
ues for these moments can be taken from either BIMGQ and BRM. In the rest of this paper, the ground-truth
solution for gðx; tÞ shall be taken as the BRM solution at s = 16.

Next, we shall compare the numerical solutions at the intermediate bin resolution of s = 2. Fig. 11 shows
the results at t = 20 min. BRM and BIMGQ are closer to the converged solution, especially near the peak
region. Fig. 12 shows the results at t = 40 min. At this time, the mass density function exhibits two peaks.
BRM provides the best solution not only at the first peak but also at the second peak. BIMGQ overestimates
the distribution at the first peak and Bott’s LFM and Simmel’s LDM underestimate it at the first peak. In
Fig. 13, the results are replotted on logarithmic scales. At the bin resolution of s = 2, BRM provides the most
accurate result when compared to the converged solution. For the region near the steep advancing front, all
methods except BRM fail to provide a satisfactory solution at this bin resolution. Similar observations can be
made for the case of the Hall kernel. While BIMGQ with s = 2 works well for the Golovin kernel, the linear
prescription for the binwise distribution is inadequate at s = 2 for the case of strongly nonlinear hydrodynamic
kernels. However, we will demonstrate later that BIMGQ improves significantly when the bin resolution is
doubled by setting s = 4, i.e., the method has a rapid and consistent convergence rate. Alternatively, we
may consider the use of a different local approximation such as a power-law nonlinear distribution. This pos-
sibility will be studied in a subsequent paper.



3.3. Numerical accuracy and convergence

Due to the approximations in evaluating the gain and loss integrals associated with the discretization in
time and droplet size, two important issues, numerical accuracy and efficiency, must be considered for a



Table 6
Predicted second and third moments for a system driven by the Hall kernel

t (min) M2ðtÞ (mg2/cm3) M3ðtÞ (mg3/cm3)

BIMGQ BRM LDM LFM BIMGQ BRM LDM LFM

0 6.739e�9 6.740e�9 6.739E�9 6.739E�9 6.813e�14 6.818e�14 6.813e�14 6.813e�14
10 7.184e�9 7.185e�9 7.183e�9 7.184e�9 8.282e�14 8.286e�14 8.282e�14 8.283e�14
20 7.999e�9 7.999e�9 8.001e�9 8.002e�9 3.801e�13 3.798e�13 3.855e�13 3.964e�13
30 7.827e�8 7.815e�8 7.941e�8 8.194e�8 2.531e�9 2.531e�9 2.606e�9 2.901e�9
40 1.942e�5 1.939e�5 1.966e�5 2.035e�5 6.107e�6 6.100e�6 6.226e�6 6.716e�6
50 7.928e�4 7.915e�4 7.983e�4 8.221e�4 2.108e�3 2.103e�3 2.137e�3 2.285e�3
60 6.997e�3 6.989e�3 7.025e�3 7.163e�3 1.221e�1 1.219e�1 1.231e�1 1.283e�1

Fig. 11. Mass density for the Long kernel as a function of droplet size at t = 20 min. Numerical solutions at s = 2 from different methods
are compared with BRM solution at s = 16.
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Fig. 12. Mass density changing for the Long kernel as a function of droplet size at t = 40 min. Numerical solutions at s = 2 from different
methods are compared with BRM solution at s = 16.
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numerical method for solving KCE. The numerical accuracy concerns the difference between a numerical solu-
tion of KCE and the converged solution of KCE. It may be measured at several levels, ranging from the over-
all mass conservation over time (an integral property that must be satisfied) to the instantaneous distribution
of droplet number density. In many cases, while the overall mass conservation is ensured by design, the instan-
taneous distribution may deviate from the converged solution due to numerical diffusion and dispersion.

Here we develop quantitative measures to rigorously examine the accuracy and convergence properties of
BIMGQ for both the Golovin kernel and hydrodynamic kernels. The rate of convergence of a given algorithm
is an important measure of the consistency and quality of the algorithm.

It is usually expected that a higher bin resolution would provide a more accurate representation but at the
same time require a longer computational time. In Figs. 14–16, we compare the instantaneous mass distribu-
tions obtained with different bin resolutions. For the case of Golovin kernel (Fig. 14), they are compared also



Fig. 13. Logarithmic plots of mass density for Long kernel as a function of droplet size: (a) t = 20 min and (b) t = 40 min. Numerical
solutions at s = 2 from different methods are compared with BRM solution at s = 16.
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with the analytical solution. For the cases of the Long and the Hall kernels (Fig. 15 and 16), the benchmark
converged solution (BRM at s = 16) is used to assess the rate of convergence as the bin resolution is increased.
Clearly, BIMGQ converge to the true solution in all cases when the bin resolution is increased. For the case of
Golovin kernel, when the bin resolution measured by the parameter s is 2 or higher, BIMGQ essentially
recover the analytical solution not only for early time (t = 20 min) but also for the later time (t = 40 min).
When the hydrodynamic kernels are considered, we find that BIMGQ requires a bin resolution of s = 4 to
provide a solution of good quality.

To quantify the accuracy of different numerical methods for solving KCE, we introduce the moments of the
size distribution calculated numerically as



Fig. 14. The instantaneous mass density distributions obtained with BIMGQ at different bin resolutions for the Golovin kernel:
(a) t = 20 min; (b) t = 40 min. Note that not all the data points are plotted for s = 8 and s = 16 in order to avoid clustering of symbols.
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Mkðt; sÞ ¼
Z

nðx; sÞxk dx ¼
Z

gðln r; sÞxk�1 dðln rÞ �
X

i

gðt; i; sÞðxi
ffiffiffi
q
p Þk�1 ln q

3
; k ¼ 0; 1; 2; 3; ð48Þ
where the geometric average, xi
ffiffiffi
q
p

, of xi and xiþ1 is used in the above expression to observe that the integration
is performed on the logarithmic axis. The above definition only makes use of the computed mass in the bins so
it did not take the full advantage of the two degrees of freedom available in BIMGQ. This is so defined to
allow for the evaluation of moments in Bott’s LFM for which only one moment (the bin mass) is explicitly
employed. The relative error for the kth-order moment is defined as



Fig. 15. The instantaneous mass density distributions obtained with BIMGQ at different bin resolutions for the Long kernel:
(a) t = 20 min; (b) t = 40 min.
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�kðt; sÞ ¼ jMkðt; sÞ �Mkðt; CÞj
Mkðt; CÞ ; ð49Þ
where Mkðt; CÞ is the converged numerical benchmark discussed previously. For the Golovin kernel, the
benchmark is set to be Mkðt; 32Þ calculated from the BIMGQ code. Here, the analytical solution is not used
due to the small mass truncation below x1 and above xMþ1. For the Long kernel and Hall kernel, the bench-
mark is Mkðt; 16Þ obtained from BRM. Fig. 17 shows the relative errors of different methods when predicting
the first four moments for the case of Golovin kernel at t = 40 min. BIMGQ has a better accuracy for all mo-
ments than LFM and LDM. For the zeroth moment, the relative error for BIMGQ is about one order less
than those of LFM and LDM. For higher order moments (k = 2 and 3), BIMGQ could be two to three orders
more accurate than LFM and LDM at high resolutions. For unclear reason, LFM has a larger error at s = 16





Fig. 17. Relative error in the predicted moments for the case of Golovin kernel at t = 40 min: (a) zeroth moment or the number density;
(b) first moment or mass, here only BRM is considered as other methods have no error by design; (c) second moment; (d) third moment.
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s = 16, BIMGQ is clearly more accurate than LFM and LDM. BRM could cause an overprediction of system
mass by 4% at s = 1 after 40 min, although this problem can be neglected for s P 2. Very similar trends are
found for case of the Long kernel.

Finally, we briefly compare the CPU times needed for different methods in Fig. 19. All runs are performed
on a PC linux workstation with a 2.8 GHz Pentium processor. The CPU times are for runs with 3600 time
steps and dt = 1 s. The CPU time scales roughly with s2, which is expected as the number of operations is pro-
portional to the number of pair interactions. LDM requires the shortest CPU. The BRM code has been highly
optimized over the years and is the next efficient code in terms of CPU. The CPU times of BIMGQ and LFM
are comparable. Since our code has not been fully optimized at this stage, it is believed that a significant
speedup is still possible for BIMGQ.



(b) first moment or mass, here only BRM is considered as other methods have no e
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4. Summary and concluding remarks

A new numerical method, bin integral method with Gauss quadrature (BIMGQ), for solving the kinetic
collection equation (KCE) has been developed. The method makes use of two binwise moments, namely,
the number and mass concentration in each bin. These two degrees of freedom define an extended linear rep-
resentation of the number density distribution for each bin following Enukashvily [21]. Unlike previous
moment-based methods, the concept of pair-interactions is used to focus on the consequences of interactions
of source particles from any two bins (or sections), namely, the losses for the two source bins and gains for
possibly two other bins are simultaneously evaluated, ensuring rigorous treatments of mass and number con-
servations. Collection kernels are treated by bilinear interpolations. All binwise interaction integrals are then
handled exactly by Gauss quadrature of various orders. The method involves no local weighting function or
Fig. 18. Relative error in the predicted moments for the case of Hall Kernel att= 40 min: (a) zeroth moment or the number density;rror by design; (c) second moment; (d) third moment.
ics 226 (2007) 59–8885



Fig. 19. CPU time for different methods for the case of Hall kernel. Time interval dt is 1 s and total simulation time is 60 min.
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complex deductions. In essence the method combines favorable features in previous spectral moment-based
and bin-based pair-interaction (or flux) methods to greatly enhance the logic, consistency, and simplicity in
the numerical method and its implementation. The method represents an improvement over the linear flux
method (LFM) of Bott [15] and the linear discrete method (LDM) of Simmel et al. [24].

The accuracy and convergence of BIMGQ are examined along with three other methods, the method of
Berry and Reinhardt (BRM; [4]), the linear flux method (LFM) of Bott [15], and the linear discrete method
(LDM) of Simmel et al. [24]. For the case of the Golovin kernel, it is shown that our method predicts exactly
both the overall number density and mass density, regardless of the bin resolution used; and the instantaneous
mass distribution can be accurately produced at a moderate bin resolution of s = 2. For the two hydrody-
namic kernels (the Long kernel and the Hall kernel), it is shown that BIMGQ, BRM, and LDM are capable
of generating the ground-truth converged solution at a bin mass ratio of 21=16 ¼ 1:04427. The converged values
of the first four moments for each hydrodynamic kernel have been presented for the first time. It is hoped that
both the converged mass distributions and moments for the two hydrodynamic kernels can be used as the
benchmark to measure the accuracy of any numerical method for KCE in the future. Numerical solutions
of good quality can be obtained with BIMGQ at s = 4 for the hydrodynamic kernels.

Quantitative measures are developed to quantify the accuracy and convergence properties of the different
methods. A monotonic convergence has been demonstrated for BIMGQ, BRM, and LDM, but not for LFM.
It is shown that BIMGQ has a superior accuracy for the Golovin kernel and a monotonic convergence behav-
ior for hydrodynamic kernels. Overall, BRM and BIMGQ have similar convergence rates for the Golovin ker-
nel. For the case of hydrodynamic kernels, BRM is the most accurate method for moderate bin resolution
(s = 2) due to the high-order Lagrangian interpolations used for both the mass distribution and the collection
kernel; and BIMGQ is more accurate than LDM and LFM, especially when high-order moments are con-
cerned. The convergence measure developed here should be of value to future studies on numerical solution
of KCE.

For all the three collection kernels tested in this paper, BIMGQ at low bin resolutions tends to underpredict
the mass distribution at the steep advancing front, unlike the overprediction observed for LFM and LDM.
This may be viewed as an indication that the method exhibits very little numerical diffusion. This underpre-
diction may be explained as follows. The linear binwise representation tends to yield a partial linear distribu-
tion at the left bin boundary (scenario (b) in Fig. 3) when applied to the bins near the steep advancing front, as
the distribution there falls exponentially. As a result, it slows down rather than promotes the growth in the
steep tail region. This also explains why the underprediction becomes most obvious for the lowest resolution
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at s = 1. We view this slower growth at coarse bin resolutions as a desirable feature since the method itself
would not broaden the size spectrum just because of numerical errors, while most existing numerical methods
for KCE tend to behave in the opposite way leading to artificially fast growth. It is also important to note that
the level of approximation in representing the collection kernel can influence the rate of growth. For example,
the less accurate Long kernel yields a faster growth than the more accurate Hall kernel. This is another reason
why a slower growth at coarser bin resolution is more desirable.

We recognize that the number of variables solved in BIMGQ and LDM are roughly twice the number of
variables solved in BRM and LFM. In dynamic cloud models, this could imply twice of dynamic equations
need to be solved in BIMGQ and LDM (thus twice the CPU time as well). A fair comparison would be
between the results of BIMGQ and LDM at a given s with those of BRM and LFM at 2s. The convergence
plots, Figs. 17 and 18, do contain the information that allows the comparison based on the number of vari-
ables used. In this sense, LFM is quite efficient and reasonably accurate and BRM is the most accurate of all.

The main utility of the BIMGQ method demonstrated in this paper is the establishment of benchmark solu-
tion for any collection kernel. Another utility of the method is demonstrated in Xue et al. [40] in which the
method is applied to study how the growth process depends on the turbulent enhancement of the collision
kernel. The accuracy of the method allows us to focus on the effects of the kernel and the width of the initial
size distribution, instead of worrying about numerical integration errors.

Finally, this paper represents merely a first step in bridging the spectral moment methods and pair-interac-
tion flux methods. The technique developed here can be made more accurate for low to moderate bin resolu-
tions (s = 1 and 2), if a more general, power-law distribution is used to describe the number density
distribution in each bin. However, the linear representation used here has the advantage of simplicity and ease
to evaluate the gain and loss integrals by Gauss quadrature. A power-law distribution would be more appro-
priate for regions of large local gradients, such as near the advancing steep front. It is also possible to use a
linear representation in most regions and a power-law representation for selected regions to obtain an optimal
representation in terms of accuracy and efficiency. In principle, the method can be used for a combination of
uniform grid and geometric grid or arbitrary bin grid, but with the complication that the target due to a pair
interaction may contain more than two bins. Some of these possibilities will be explored in future
investigations.
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